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Reynolds number effects on laminar mixing in the Kenics static mixer 
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The Kenics static mixer was investigated numerically using Lagrangian methods. to characterize mixer performance in Iaminar flow. 
Techniques from dynamical systems analysis (Poincare sections, tracking of fluid tmcers, and the development of stretching histories for 
tracer elements) as welt as a more traditional mixing measure (the variation coefficient) were used to compare mixing performance at various 
Reynolds numbers. For creeping fiow conditions (Re s IO), the Kenics flow is globaily chaotic and mixing performance is independent of 
Re. For Re = 100, significant islands of regular motion develop. These islands do not exchange material with the remainder of the flow and 
act as a barrier to uniform mixing. For Re = 1000, the flow is predominantly chaotic again, but small islands remain, leading to less effective 
mixing than under creeping flow conditions. 0 1998 Elsevier Science S.A. All rights reserved. 
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1. Introduction 

Mixing is an essential component of nearly all industrial 
chemical processes, ranging from simple blending to com- 
plex multi-phase reaction systems for which reaction rate, 
yield and selectivity are highly dependent upon mixing per- 
formance. Consequences of improper mixing include non- 
reproducible processing conditions and lowered product 
quality, resulting in the need for more elaborate downstream 
purification processes and increased waste disposal costs. 
Despite its importance, however, mixing performance is sel- 
dom ch~acte~zed rigorousIy for indust~al systems. Detailed 
characterizations are important, particularly in slow-moving 
laminar flows of high viscosity materials which have a serious 
potential to lead to inhomogeneity and poorly mixed regions 
within the flow system. 

In recent years, significant progress has been made in the 
characterization of fluid-mechanical mixing using Lagran- 
gian tracking techniques and tools from dynamical systems 
theory, particularly those related to chaos. The majority of 
previous work has focused on model flows that are two 
dimensional and time periodic, and a smaller set of studies 
have considered simple, three-dimensional, spatially periodic 
flows [ 1,2] where a simplified, two-dimensional analytical 
approximation to the velocity field was obtained. While com- 
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plex, three-dimensional geometries typical of most industrial 
mixers mak.e analytic solutions of the velocity field in such 
equipment -impractical; a high quality numerical solution of 
the velocity field can provide a suitable starting point to char- 
acterize mixing performance. This approach has allowed 
Lagrangian techniques to be applied to a fully three-dimen- 
sional flow in a commercially relevant mixing system: the 
Kenics static mixer (Chemineer, Dayton, OH). Each element 
of the Kenics mixer is a plate which has been given a 180” 
helical twist. The complete mixer consists of a series of ele- 
ments of alternating clockwise and counter-clockwise twist 
arranged axially within a pipe so that the leading edge of an 
element is at right angles to the trailing edge of the previous 
element (Fig. 1 ) , Laminar flow in the Kenics mixer is fully 
three-dimensional and spatially-periodic in the axial direc- 
tion, with each pair of adjacent elements forming a single 
periodic unit. For steady-state operation, the periodic spatial 
dimension in this flow is analogous to the periodic time 
dimension in previously studied t~vo-dimensional flows. 

Previous communications [ 3-51 have illu~t~ted the use 
of computat ional fluid dynamics (CFD) to obtain the velocity 
field in the Kenics mixer. Mixing at low Reynolds number 
(Re = 0.15:1 was characterized using Lagrangian tracertrack- 
ing techniques and methods for characterizing chaotic flows 
[3,5]. In the remaining sections of this paper, these tech- 
niques are applied to quantitatively evaluate the mixing per- 
formance of the Kenics mixer in laminar flow for a range 
of Reynolds numbers up to Re = 1000. Section 2 briefly 
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Fig. 1. A six element Kenics static mixer. 

Table 1 
Mixer geometry and fluid properties 

Mise I 

Diameter(D) 
Plate thickness 
Entrance length 

Exit length 

Flriid 

Density (p) 
Viscosity ( p) 

5.08 cm 
0.3 175 cm 
10.16 cm 

10.16 cm 

1.20 g/cm’ 

500 cp 

describes the numerical techniques used to obtain the velocity 
fields and to characterize mixing at various Reynolds num- 
bers. Section 3 presents results and discussion, and Section 4 
summarizes the conclusions of this work. 

2. Methods 

2.1. Velocifyjeld 

The base configuration chosen for study was a Kenics 
mixer with open tube entrance and exit sections (Fig. 1). 
Details of the system geometry and fluid properties are given 
in Table 1. Simulations were performed for open tube Reyn- 
olds numbers (Re= (p(y,)D)Ip) of 0.15. 1, 10, 100, and 
1000. The corresponding inlet velocities were (Ye) = 0.0012 
m/s, 0.0082 m/s, 0.082 m/s, 0.820 m/s, and 8.20 m/s, 
respectively. A commercially available computational fluid 
dynamics (CFD) software package (FLUENT/UNSa) was 
used to obtain the velocity field in the static mixer. Previous 
communications presented a full discussion of the grid gen- 
eration, grid validation, and solution procedure using this 
software [ 41, and demonstrated the accuracy of the solution 
through comparison with experiments [ 351. 

Most prior investigations of the Kenics mixer by other 
researchers [ 6-91 have neglected developing flows in order 
to obtain approximate analytic solutions for the velocity field. 
However. Eulerian characterization of the flow field and 
Lagrangian analysis of mixing behavior demonstrate that the 
flow areas neglected in such idealized analytic solutions pro- 
vide the greatest potential contribution to mixer perfomlance 
[4, lo]. More recently, studies of the Kenics mixer [ 111 and 
the Sulzer SMRX mixer [ 121 by other researchers, as well 
as our own analyses of the Kenics mixer [ 3-5,10,13 ] , have 
made use of CFD to obtain high quality numerical solutions 
for the entire velocity field, including the developing flows, 
without the need for additional simplifying assumptions 
(although such refinements come at the price of a signifi- 
cantly increased computational burden). In the current study, 

separate velocity field solutions were obtained for each Reyn- 
olds number considered (0.15, 1, IO, 100, 1000). These solu- 
tions serve as a starting point for further characterization of 
the mixer performance using Lagrangian tracking techniques. 
Such an approach has been described in detail elsewhere 
[ 3,5] and only a brief summary is presented here. 

2.2. Tracking cornprmtions 

Simulation software was developed to track fluid tracers 
as they move through the mixer flow field, using the CID 
generated velocity field as input. Trajectories are tracked by 
integrating the vector equation of motion 

dx 
- ‘V(X) 
dt 

for each tracer using a fourth order Runge-Kutta integration 
scheme with adaptive step-size control [ 141. In addition to 
tracking the position of tracers placed into the simulated 
velocity field, the software is also used to compute the stretch- 
ing of an infinitesimal vector I associated with each tracer. 
The evolution of the vector 1 is tracked by integrating Eq. ( 1) 
(element position) along with: 

d(l) 
- =(Vv)“~z, 
dt 

&=,=I, (2) 

The total accumulated stretching h experienced by the ele- 
ment after some time is defined as: 

For the stretching calculations, each tracer is assigned an 
initial stretch vector Zu = [ 1 ,O,O] , The tracer position and 
accumulated stretching are tracked through the flow via inte- 
gration of Eqs. ( 1) and (2)) and at each periodic plane, the 
position and components of the stretch vector I are recorded. 
The rate of intermaterial surface area generated in a region 
of the flow is proportional to the rate of stretching experienced 
by fluid tracers in that region. The stretching of fluid elements 
determines the rate of the micromixing process both by 
increasing the intermaterial area over which inter-diffusion 
of components can occur, and also by decreasing the required 
diffusional distance. 

For the Reynolds numbers considered here, the Kenics 
velocity field shows a periodicity matching that of the mixer 
geometry [ 41. The particle tracking software takes advantage 
of this periodicity to extend the simulation results from a six- 
element base-case mixer to devices of greater length. The six- 
element base case is divided into an entrance section (inlet 
tube and first two Kenics elements), exit section (outlet tube 



and Kenics elements 5 and 6), and central periodic section 
(Kenics eiements 3 and 4). Within the particle tracking soft- 
ware, the central section is repeated as a sparially periodic 
unit to extend the tracking to a mixer of any length. 

For each Reynolds number, three types of simulations were 
performed. First, Poincare sections were generated for each 
flow condition by tracking 15 tracers through the flow for 
500 elements 1250 periods) and recording their cross-sec- 
tional positions when the tracers crossed the planes after the 
2nd Kenics element, 4th element, 6th element, etc. (i.e., after 
every spatial period). These cross-sections were then super- 
imposed to form two-dimensional Poincare sections. The 
structure ofthe Poincare section reveals the nature of different 
flow regions. Chaotic flow regions appear as random clouds 
of points on the PoincarC section, whiie regular regions appear 
as areas devoid of points or closed curves. While no mixer 
ever has 500 elements, this computation reveals which 
regions of the Aow domain are chaotic and which are regular, 
and thus determines the asymptotic degree of mixedness pos- 
sible in the system. After a sufficient number of periods, 
trajectories that start out in the chaotic portion of the flow 
will asymptotically approach all points in the chaotic region, 
whereas trajectories that start in regular regions are confined 
to remain in the regular portion of the flow. Since the 
exchange of material between regular and chaotic portions of 
a flow can only occur via slow diffusion processes, the pres- 
ence of regular regions presents a barrier to uniform mixing 
in a Aow system. 

The second set of tracking computations were performed 
to simulate mixing of equal portions of two similar fluids. In 
this case, N 20,000 uniformly spaced tracers were initially 
placed to cover the entire mixer cross-section in the open tube 
region 0.1 cm before the leading edge of the first Kenics 
element, with the points in the upper and lower halves of the 
cross-section assigned different colors. The tracers were 
tracked through the flow and their cross-sectional positions 
recorded when the particles crossed the planes after the 2nd 
Kenics element, 4th element, 6th element, etc. For these sim- 
ulations, the stretching was also tracked for each tracer by 
integrating Eq. (2) along the tracer trajectories. 

The third set of tracking computations simulated the injec- 
tion of a small quantity of tracer into the bulk flow. The 
spreading of the tracer was quantified using the variation 
coefficient. Following the ‘intensity of segregation’ concept 
proposed by Danckwerts [ 151, mixture quality has often been 
quantified in terms of a mixing index that describes thedegree 
of homogeneity of the system. The mixture homogeneity is 
evaluated based on a statistical analysis of samples from the 
mixture, with the mixing index expressed as a function of the 
standard deviation ( cr) or variance ( 2) of the mixture sam- 
ples. A previous communication presented simulation results 
for mixture quality in the Kenics mixer at Re = 0.15 in terms 
of the variation coefficient. These results were compared with 
experimental results from the literature, and good agreement 
was obtained [3]. Due to the discrete nature of the tracer 

tracking results, the number-based variation coefficient (r/z 
was computed in the current study for each ReynoIds number 
case using a procedure detaiIed in previous conlmunications 
[ 10,131. For each tracer injection simulation, approximately 
10,000 uniformly spaced particles were placed in a circle 
centered at (y,z) = (O,O), 0.1 cm upstream of the leading 
edge of the first Kenics element. The diameter of the circle 
of tracers was set such that the circle covered an area that 
represents I. % of the volumetric A ow on the injection cross- 
section. The tracers were tracked through the flow, theirposi- 
tions recorded at every spatial period, and a/N computed 
from the position data. 

Previous communications have used the algorithms 
described above to analyze the flow and mixing in the Kenics 
mixer at Re = 0.15. Good agreement was achieved between 
computational results and experimental dataforpressuredrop 
[ 41, striation development, residence time distributions, var- 
iation coefficient [ 31, and a tracer mixing experiment [5]. 
The close correspondence between computations and exper- 
iments served to validate the simulation results and indicated 
that the simulations provided a good model of the physical 
system, The results obtained using these algorithms to inves- 
tigate the flow in the Kenics mixer at other Reynolds numbers 
are presented and discussed nest in Section 3. 

3. Results 

3.1. VelocityfieEds 

The velocity fields for each Reynolds number were 
obtained via CFD calculations [4]. The velocity fields are 
illustrated in Fig. 2, which shows planar cross-sections from 
the third mixer element located at normalized distances of 
X’ = 0, X’ =: L/4, and X’ = L/2 relative to the length (L) of a 
single element. Fig. 2a-c correspond to Re = 1, d-f to 
Re= 10, g-i toRe = 100, andj-I toRe= lOOO.Themagnitude 
of the axial velocity is denoted by the shading of the filled 
contours, a:< indicated in the scale at the right of each set of 
figures (darker shades denote faster flow). The direction and 
relative ~lagnitude of the radial and tangential components 
of the velocity are indicated by the vector field. Below Re 10, 
creeping flow is obtained. Under these conditions, the veloc- 
ity magnitude at each flow location is directly proportional 
to the Reynolds number, so all creeping flow velocity fields 
have the same 3-dimensional structure, which is evident from 
Fig. 2a-c *and d-f. The velocity field for Re = 0.15 [ 43 
appears identical to that for Re = I. For a Kenics element, the 
cross-sectional plane at the middle (X’ = L/2) of the element 
is a plane of specular anti-symmetry. When the flow is in the 
creeping (reversible) regime, the velocity profiles for the 
cross-sectional planes at X’ = 0 and L/4 are exactly analogous 
and anti-symmetric to the velocity profiles at X’ =L and 314 
L, respectively. Developing flows are confined to N 25% of 
the flow at the entrance and exit of the element, and a well- 
developed velocity profile that is essentially constant with 



Fig. 2, Velocity iiefds. The filled contours represent the magnitude of axial vclocitg as denoted by the scale shown as the right (darker shades denote faster 
flow). The vector field represents the direction relative magnitude of the radial and tangential velocity components, (a)-(c) Re= 1; (d)-(f) Re= 10; (g)- 
(i) Re= 100: (j)-(i) Re=iOOO. (a.d,g.j) X’-0; (b,e.h,k) X’=L/+I: ic,f,i,l) x’=Li2. 

respect to the helical reference frame of the mixer element is 
attained in the centrai 75% of the element ( 118 L, < L’ < 
71% L). 

Above Re= IO, the symmetry of the velocity field with 
respect to the element mid-plane is lost when inertial forces 
become significant and the Bow is no longer reversible. At 
Re == 100 (Fig. 2g-i) f entrance effects are si~ni~cant over a 
larger region of the flow, extending up to X’ =L/2. The 
transitional, developing flows persist over -75% of the 
velocity profile, and only a small region of the flow attains a 
well-developed profile. Inertial effects become even more 
pronounced for Re = 1000 ( Fig. 2j-1) f and there is no region 
within a miser element where a ~~e~~-deve~oped velocity pro- 
file is attained. 

A comparison of velocity &Ids reveals clear differences 
in the Kenics flow as a function of Reynolds number. How- 

ever, the effects of these velocity differences on mixing per- 
formance cannot be readily discerned from an Eulerian 
analysis of the velocity fields alone. An analysis of mixing 
performance requires Lagr~g~an simulations capable of cap- 
turing ihe evolution along the flow of partially mixed struc- 
tures. The results from such computations are presented in 
the following sections, 

3.2. Pniwcizr~secriorzs 

The first Lagrangian tool appIied to evaluate mixing pe!- 
formince is the PoincarC? section. Poincar6 sections generated 
at each Reynolds number using the techniques described in 
Section 2 are shown in Fig, 3. For Re= 0. IS (Fig. 3a), the 
Poincark section appears as a nearly featureless cloud of 
points, suggesting that the flow is globally chaotic [ 5,101 S 
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Fig. 3. Poincar6 sections for (a) Re=0.1.5, (b) Re= 1, (c) Re= 10, (d) Re= 100, and (e) Re= 1000. 

For Re = 1 and Re = 10 (Fig. 3b and c) , the Poincare sections 
are similar to the Re = 0.15 case indicating that for all of the 
creeping flow cases, the flow remains globahy chaotic. 

As the Reynolds number is further increased, the structure 
of the Poincarb section changes. At Re = 100 (Fig. 3d), the 
Poincare section has two pairs of oval-shaped regions that 
are devoid of points, indicating that these regions are segre- 
gated from the remainder of the flow. One pair of segregated 
regions is centered near (y,z) = i (0.42 R,0.38 R) in 
quadrants 1 and 3, and a second pair is centered near 
(y,z) = IL ( - 0.41 R,0.43 R) in quadrants 2 and 4. The area 
outside the oval regions appears as a random sea of points, 
indicating chaotic flow. The area occupied by the segregated 
regions represents approximately 9.6% of the volumetric flow 
passing through the mixer. For Re = 1000 (Fig. 3e), the Poin- 
care section again appears as a random cloud of points with 
no discernible islands, suggesting that the ffow is again glob- 
ally chaotic. 

Poincare sections provide valuable information about the 
asymptotic mixing performance of the Kenics system for very 
long mixers. However, most applications employ mixers with 
a small number of elements. The tracer mixing simulations 
described next provide information about the evolution of 
partially mixed structures for situations typical of indusrrial 
appIications. 

Mixing of equal portions of two Newtonian fluids with 
identical densities and viscosities was simulated for each 
Reynolds number, and the structures obtained on different 
mixer cross-sections are shown in Fig. 4 (sub-figures a-c 
correspond to Re = 1: d-f to Re = 10, e-g to Re = 100, and 
h-j to Re = 1000). These cross-sections represent the struc- 
tures which would be present at the co~esponding planes for 
mixers in steady-state operation with a continuous feed of 
two segregated components. The simulation results for 

Re=0.15 [ 31 (not shown in the interest of brevity) are 
identical to i:hose for Re = 1 and also to results that have been 
reported in well known experimental studies [ 16,171. The 
number of striations present in the partially mixed structure 
approximately doubles with each mixer element, following 
the standard correlation S=2” proposed by several authors 
[ 17-I 93. The simulation results for Re = 0.15 also provide 
good quantiPative agreement with literature dataforresidence 
time distributions and variation coefficient, indicating that 
the simulati’ons appear to be capturing the essential physical 
features of the system [ 31. 

The striation patterns for Re= 10 (Fig. 4d-f) are essen- 
tially identical to the Re = 1 case since creeping flow behavior 
is retained at this Reynoids number. As mixing proceeds, the 
flow is divided and stretched, forming an interme~h~d series 
of striations of the two fluids. After 10 elements (Fig. 4c and 
f), individual striations are no longer visible with the reso- 
lution provided by this number of tracer elements. For 
Re= 100 (Fig. 40-i)) distinctly different patterns are 
observed. At first glance, the partially mixed structure after 
six element’s at Re = 100 (Fig. 4h) may appear somewhat 
more ‘random’ than for the lower Reynolds number flows, 
since the regular pattern of striations has been disrupted. 
However, the segregated regions identi~ed in the Poincare 
section for Re = 100 become visible as isolated regions that 
do not exchange material with the remainder of the flow. 
After 10 elements (Fig. 4i) the chaotic region appears well 
mixed while the segregated areas still contain only one com- 
ponent, revealing a significant obstacle to uniform mixing at 
Re = 100 that was not present at lower Reynolds numbers. 
As the Reynolds number is increased further to Re = 1000 
(Fig. 4j-l), it is difficult to determine whether segregated 
regions persist in the flow. After 10 elements (Fig. 41)) the 
flow appears well mixed and no segregated islands can be 
detected visually with the degree of resolution provided by 
the number of tracers used. 
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Fig, 4. Equal volume mixing of two initially segregated components. (a)-(c) Re = 1; (d)-(f) Re = 10; (g)-(i) Re = 100; (j)-( 1) Re = 1000. Cross-seciioiil 
slices for two elements (a.d,g,j); six elements (b,e,h,k); and 10 elements (c,f,i,l). 

3.4. Vcrrintion coejjkienl 

While the evolution of striation patterns provides a valua- 
ble qualitative understanding of mixing progress within the 
static mixer, a quantitative description of the mixture quality 
provides a more practical means of evaluating mixerperform- 
ante. In order to quantify differences in mixing performance 
at different Reynolds numbers, a 1% tracer injection was 
simulated in each flow for tracer material with the same den- 
sity and viscosity as the bulk fluid. The tracer injection was 
centered at ( y,:) = ( 0,O) , 0.1 cm upstream of the edge of the 
first element. Representative cross-sections from the tracer 

tracking are shown in Fig. 5. Fig. 5a-c show cross-sections 
for Re = 10; the results for Re < 10 (not shown) appear iden- 
tical to the Re= 10 case. With progress through the mixer, 
the initial circle of points is stretched into a ribbon, which is 
elongated, re-oriented, and folded by the flow within individ- 
ual elements, and cut by the leading edges of sequential mixer 
elements. The tracer is initially confined to a small fraction 
of the total flow, but is redistributed by the mixing action to 
spread throughout the flow domain after 12 elements (Fig. 
5~). The results of similar tracer studies for the Re = 100 and 
Re = 1000 cases are shown in Fig. 5d-f and g-i, respectively. 
In the Re = 100 case, the tracer spreads to most of the chaotic 
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Fig. 5. Cross-sectional orofiks for 1% tracer injection at y  = 0, z= 0. (a-c) Re = 10, (d-f) Re = 100, (g-i) Re = 1000. Cross-sectional siices for foui elements 
(a:d,g) ; eight etements’( b,e,h) ; and 12 elements (c,f,i) 1 

region after approximately 12 elements (Fig. 5f). However, 
the smaI1 segregated regions identified in Fig. 4i remain 
devoid of tracer. For Re = 1000, the tracer again spreads 
throughout the flow after 12 elements. While the flow for 
Re = 10 appears to provide the best mixing, such a qualitative, 
‘eye-ball’ statement needs to be challenged by quantitative 
means. 

From the tracer mixing simulations, the number”based var- 
iation coefficient was computed for each ReynoIds number. 
The results cr/N vs. normalized axial position X are shown in 
Fig. 6. For all Re, the calculated variation coefficient 
decreases monotonicaIIy from the inlet up to X= 15 tube 
diameters ( IO mixer elements). After this point, the variation 
coefficient levels out, indicating that the characteristic length 
for the mixture has fallen below the scale of the grid size used 
for calculation, and further homogenization of the mixture 
cannot be determined at this level of resolution. Increasing 
the resolution of the variation coefficient by two mixer ele- 
ments would require a sixteen-fold increase in the number of 

tracked particles, and a corresponding increase in the com- 
putation time (to approximately 1000 h of CPU time on a 
Sun SPARC 2017 12) [ 3 3. However, the variation coefficient 
data for the first 10 mixer elements is sufficient for further 
comparisons and the marginal increase in the resolution that 

L-L 
0 3 6 9 12 15 

X 

Fig. 6. V~atio~ coefficient vs. normalized axial position X. (- 
R~=O,~~;---R~=~;---RR~=~O;-----R~=~OO; . ..I. 

Re=lO@O). 

could be obtained with more extensive computations does 
not justify the increase in computational time. 

For Re 4 10, the variation coefficient curves are essentially 
identical, indicating equivalent mixing performance per unit 
length. For Re = 100, the variation coefficient drops more 
rapidly than for the creeping flow cases over the first two 
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elements, but subsequently, the rate of reduction slows down. 
The final asymptotic variation coefficient achieved for the 
Re = 100 case is greater than the asymptotic value under 
creeping flow conditions, due to the presence of the unmixed 
islands which prevent an even distribution of tracer in the 
Re = 100 case. For Re= 1000, the variation coefficient drops 
more rapidly than the creeping flow cases for the first two 
elements, after which it decreases more slowly than for the 
creeping flow case. After 10 elements, the final variation 
coefficient values achieved for Re = 1000 and Re I 10 are 
approximately the same. 

The variation coefficient results presented in Fig. 6 are for 
a single tracer injection location along the centerline of the 
mixer. Shifting the injection point to another location in the 
flow would have some effect on the results, but would not 
affect the conclusions about the relative mixing performance 
of each case. Under creeping flow conditions, injection loca- 
tion has an effect on the extent of mixing only for the first 
few elements, after which the rate of mixing is independent 
of injection location [ 131 (all flows with Re I 10 would still 
produce identical results at any chosen injection point). For 
the Re = 1000 flow as well, the choice of injection location 
would only affect the variation coefficient results over the 
first few elements. Due to the chaotic nature of the flow, 
material injected at any location eventually spreads to the 
entire flow. For Re = 100, tracer injected at any point in the 
chaotic portion of the flow spreads throughout the chaotic 
region, producing the same asymptotic variation coefficient 
as in Fig, 6. However, if tracer were injected inside one of 
the regular islands, the tracer would remain trapped in the 
island would not spread to the chaotic portion of the flow, 
resulting in a more highly segregated system and a greater 
asymptotic value for the variation coefficient. 

A quantitative comparison of the different Reynolds num- 
ber cases was made by fitting the variation coefficient results 
for the first 10 mixer elements to an equation of the form: 

$ =A exp(-BX) (4) 

which is frequently used to describe data of this type [ 201. 
The coefficient B represents the rate of decrease in the vari- 
ation coefficient per unit mixer length and provides a quan- 
titative measure of the rate of mixing. For the three creeping 
flow cases, equivalent mixing rates are achieved and B = 0.17 
for each case. For Re= 100 and Re= 1000, B=0.05 and 
B = 0.12, respectively, indicating that these cases produce 
slower mixing per axial distance than the creeping flow 
conditions. 

The energy required to mix a volume of fluid in a static 
mixer is directly proportional to the system pressure drop, 
which in turn is a function of the flow Reynolds number. 
For Re I 10, the pressure drop in the Kenics mixer is 
directly proportional to the Reynolds number [4] ; for 
10 < Re < 1000, the pressure drop is approximately propor- 
tional to Re3”. Since equivalent mixing rates are obtained 
for all flows with Re < 10, the most energy efficient mixing 

is achieved at the lowest values of Re. Flows above Re = 10 
produce less effective mixing at an even higher energy cost. 
This is in direct contrast to the common generalization that 
‘better’ mixing is achieved at higher Reynolds numbers. A 
previous study of heat and mass transfer in the Kenics mixer 
by other investigators [21] indicated an analogous trend: as 
Reynolds number increased, heat transfer efficiency 
decreased since only aminimal rise in heat transfercoefficieiit 
was achieved at the expense of a significant increase in pres- 
sure drop. Although energy efficiency is maximized as 
Re -+ 0, this obviously does not represent a realistic operating 
condition since it also leads to infinite residence times and 
zero process throughput. In practical applications, the energy 
requirement must be balanced against other process consid- 
erations such as the residence time required to give a desired 
product distribution to determine the optimal operating 
conditions. 

3S. Stretching 

Computations of stretching provide another means of 
quantifying mixing performance. For the tracer mixing sim- 
ulations shown in Fig. 5, stretching was also computed along 
the tracer trajectories via Eq. (2). The geometric mean 
stretching (h) was computed as a function of axial position 
for each Reynolds number, and the results are shown in Fig. 
7. The mean stretch grows at a steady exponential rate vs. the 
number of mixer elements for each Reynolds number consid- 
ered. This exponential growth of stretching, which corre- 
sponds to an exponential generation of intermaterial area as 
fluid flows through the mixer, is one of the defining features 
of a chaotic flow. The exponential stretching rate can be 
described in terms of a specific stretching rate per period, cr, 
computed as: 

a= lim [ 1 L In@) 
n-ts n (5) 

16 j , , ( I 

0 IO 20 30 40 

Elements 

Fig. 7. Mean (A, =log,,,(l)) of the logarithm of stretching vs. normalized 
axial position X. (- Re=0.15;--Re=l;---Re=lO; 
_____ Re=l(JO; ..... Re=lmO), 
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- 4.0 

-2.0 

- 0.0 
Fig. 8. Cross-sectional profiles of the logarithm of stretching, log,& The magnitude of 10,~~ 0 A is represented by the color scale at right. (a, b) Re = 10, (c, d) 

Re = 100, (e, f) Re = 1000. Cross-sectional slices for 12 elements (a,c,e) , and 24 elements (b,d,f) 

The specific stretching rate for a spatially-periodic flow is 
the direct analog of the Lyapunov exponent in a time periodic 
system. For Re 5 10, the specific stretching rates are nearly 
identical, and CY = 1.63 + 0.01 for the three cases considered. 
For Re = 100 and 1000, lower average stretching rates of0.7.5 
and 1.18, respectively, are found. The specific stretching rates 
for each case are consistent with the results for variation 
coefficient. The results from both techniques indicate that the 
creeping flow cases (Rel 10) produce the highest rates of 
mixing (which are also independent of Re) , the Re = 100 
case provides the slowest mixing rate, and the Re = 1000 case 
is intermediate between the two. 

The overall structure of the stretching fields for each flow 
can also be examined. Plots of the spatial distribution of 
stretching at several mixer cross-section are shown in Fig. 8- 

a,b for Re = 10 (again, the results for Re _( 10 are all identi- 
cal). The positions of the dots correspond to the 
cross-sectional position where the tracked tracers cross the 
plane. The color of the dots represents the logarithm of the 
stretching magnitude, log,,(h) , where h is calculated viaEq. 
(3). The color scheme is shown at the right of the figure: 
dark blue and light blue correspond to low stretching, green 
and yellow IO intermediate values, and magenta and red to 
the highest stretching. A general increase in stretching values 
with progress through the mixer is evident, consistent with 
the exponential growth in mean stretching shown in Fig. 6. 
A distribution of stretching values is observed, with some 
regions exhibiting stretching significantly higher than the 
mean (red and yellow areas in Fig. 8a) while other regions 
exhibit stretching below the mean (green areas in Fig. 8b). 
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Similar cross-sections are shown in Fig. 8c,d for Re = 100. 
For this case, the same type of general increase in stretching 
is evident in the chaotic portion of the Bow. In the regular 
islands, however, extremely low relative stretching is 
observed which does not exhibit the same rate of increase as 
the stretching in the chaotic region. For Re = 1000 (Fig. 
Sd,e j, the stretching fieId appears more uniform again, and 
no islands of low stretching are visible. 

Differences in stretching behavior for each Reynolds num- 
ber may be examined statistically by computing distributions 
of the stretching magnitudes. Stretching dis~ibutions have 
been examined previously for the Renics mixer at very low 
Reynolds numbers [ 3,5]. Due to the exponential increase of 
stretching in chaotic regions, the dist~bution of h values 
are best described using the probability density function 
of the logarithm of stretching values H,(loglOh) = (l/N) 
dN(log,,h) idlog,& which is computed for each periodic 
plane by counting the number of points d?v’jlog,,h) that have 
stretching values between log& and log& -t- d( log,,h). 
Conceptually, H,,,( log,,/\) can be interpreted as a spectrum 
of intensities in the micro~xing process. Fig. 9 shows plots 
of H,,( log,&) ; subfigures a, b, c, and d correspond to Re = 1, 
10, 100, and 1000. Each plot contains several curves, corre- 
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sponding to different mixer cross-sections (periodic planes 
after 4, 12,20,28,36, and 34 mixer elements). 

The H,(log&) vs. log,,& plots obtained for Re= 1 and 
Re= 10 (Fig, 9a and b) are identical to one another and to 
the results previously obtained for the Kenics flow at Re = 
0.15 [5]. As the number of mixer elements increases, 
stretching accumulates and the curves shift toward higher 
values of log,& After the first few elements, the central 
portion of the curve begins to approach a bell-shaped, Gaus- 
sian protile which describes the spectrum of stretchinginten- 
sities for the bulk of the flow. Such dist~butions are typical 
of chaotic flows [22-241. The H,( log,&) curves for the 
creeping flow cases also exhibit long non-Gaussian tails on 
the high stretching side, indicating that a subset of points 
experiences very high stretching. The high stretching regions 
of the Kenics flow that produce tailing in the H,,(loglO/l) 
curves under creeping flow conditions were characterized for 
the Re = 0.15 case, and were found to coincide with the unsta- 
ble manifolds of two hyperbolic period-l points located at 
(31,~) = i (0.13 R,0.98 R) in the mixer cross-section on the 
plane between periodic segments [ 51. The do~nant feature 
of the unstable manifold of the period-l point in quadrant 1 
is a streak that emanates from the point and stretches down 
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Fig. 9. Probability density function of the logarithm of stkhing values, &(log,,h), plotted for 4, l&20,28,36, and 44 elements. The curves shift from left 
to right as the number of mixer elements is increased. (a) Re = 1: (b) Re = 10; (c) Re = 100: (d) Re = 1000. 
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and to the right across the flow cross-section, with a sym- 
metric streak for the quadrant 3 period-l point. This structure 
corresponds exactly to the highest stretching regions in Fig. 
8a,b. 

For Re = 100 (Fig. SC), the H,( log,,+) curves have a 
different shape and the distributions now display two distinct 
regions. A broad Gaussian profile develops on the right-hand 
side of the curves and shifts to the right toward higher values 
of log,,h as the number of mixer elements increases. The 
second region of the curves is a sharper peak at the low- 
stretch side of the plot which does not move as rapidly toward 
higher stretching values as the number of elements is 
increased. The stretching distributions in Fig. 9c appear qual- 
itatively similar to distributions obtained for flows that exhibit 
a mixture of chaotic regions and regular islands [ 22,2.5,26]. 
Stretching grows exponentially for points in the chaotic por- 
tion of the flow, and these stretching values correspond to the 
roughly Gaussian region of the H,( log,&) curves. For points 
in the regular islands, stretching only grows linearly with 
progress through the mixer, and these stretching values cor- 
respond to the low stretch peak. 

For Re= 1000 (Fig. 9d), the stretching distribution is 
again dominated by a single broad Gaussian peak. However, 
the small ‘bumps’ on the low stretching side of the distribu- 
tion suggests that some very small islands may be present in 
the flow for Re = 1000, even though islands were not visible 
from Poincare sections or tracer mixing patterns. In this case, 
the stretching distributions provide a more sensitive tool for 
detecting the presence of small low stretching regions than 
the cross-sectional plots, which are more limited by graphical 
resolution and the number of tracer elements used. 

Differences among the stretching distributions for the var- 
ious Reynolds numbers are highlighted in Fig. 10 by plotting 
the PDF for each case after 40 elements. For Rel 10, the 
distributions are essentially identical, consisting of a single 
compact peak with extended tailing on the high stretching 
side of the distributions (minor differences in the high-stretch 

Fig. 10. Probability density function of the logarithm of stretching values, 
H,( log,,,A), plotted for 40 elements. (p Re=0.15;--Re=l; 
----Re=10;-----Re=100;~~~~.Re=1000), 

tails of the distributions are due to noise). For Re = 100, along 
with the addition of the low-stretching peak, the Gaussian 
portion of the distribution is broader than for the creeping 
flow cases and is shifted toward lower stretching values. Also, 
there is less tailing on the high stretching side of the distri- 
bution. For !Re = 1000, the Gaussian portion of the distribu- 
tion is considerably broader than for the Re I 10 cases and 
covers a wider range of stretching intensities. The mode of 
the curve is shifted slightly to the left relative to creeping 
flow, toward lower stretching values, and the distribution 
lacks a pronounced high stretching tail. 

4. Conclusions 

Kenics mjlxer performance was investigated as a function 
of Reynolds number in the laminar flow regime (Re < 1000) 
for Newtonian fluids with constant density and viscosity. For 
each case, Lagrangian tracking simulations were performed 
to compute position and stretching for a large number of fluid 
tracers placed into the flow. Poincark sections were generated 
to identify regions of chaos and regularity in the flow and to 
examine asyimptotic mixing behavior. Mixing simulations for 
initially segregated fluids and for tracer injections provided 
qualitative images of mixing progress and quantitative data 
for computal:ion of the variation coefficient as a function of 
axial positicsn. Stretching computations provided an addi- 
tional quantitative measure of micromixing intensity for dif- 
ferent Reynolds number cases. 

The simulation results from this study characterize Kenics 
mixer performance at several discrete Reynolds numbers and 
provide a general guideline for the effectiveness of the Kenics 
mixer under different flow conditions. Among the cases 
examined, stretching and variation coefficient computations 
both indicate that the most effective mixing is achieved for 
creeping flow conditions (Re 5 lo), withpoorerperformance 
at Re= 100 and Re= 1000. The Kenics flow appears to be 
globally chaotic in the creeping flow regime (Rel lo), but 
regular islands develop at Re = 100 which encompass almost 
10% of the volumetric flow in the mixer. The regular islands 
in the flow present a significant barrier to uniform mixing and 
their presence suggests that the Kenics mixer is less effective 
in laminar flow applications above Re = 10. At Re = 1000, 
the islands have decreased in size and are not detectable in 
tracer mixing simulations; however, the presence of a ‘bump’ 
of low stretching values in the distribution suggests that small 
islands still persist. Additional computational and experi- 
mental investigation of Kenics performance above Re = 10 
is needed to determine the range of Reynolds numbers for 
which the regular islands have a significant impact on mixing 
in the system. The impact of the segregated islands on other 
variables, such as heat or mass transfer in the Kenics, would 
also be of interest. 

Below Re= 10, equivalent mixing per axial distance is 
achieved for all flow conditions. In this flow regime, the work 
expended per unit volume passing through the mixer is pro- 
portional to the Reynolds number, and the most energy effi- 



104 D.M. Hobbs, F.J. Muzio /Chemical Engineering Jotund 70 11998) 93-104 

cient mixing is achieved at the lowest flowrates. However, 
energy requirements must be balanced against considerations 
of producti~?i~y and aIlo~vab~e residence times to determine 
the optimum operating conditions. 

The results obtained from study of the Kenics mixer further 
demonstrate that dynamical systems analysis tools can be 
applied for the analysis of mixing in real, industrially-relevant 
systems. Tracer mixing simulations and stretch tracticing are 
practical computational tools to quantitatively analyze mixer 
performance under different conditions before undertaking 
costly experimental investigation. The Lagrangian tracking 
tools that have been developed could also be applied to other 
properties of interest for the flow system, such as heat or mass 
transfer, striation thickness distributions, and chemical reac- 
tions. Work in these areas is in progress in our laboratory and 
will be presented in future communications. 
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Intercept parameter for variation coefficient 
Slope parameter representing the rate of decrease of 
the coefficient of variation per mixer length 
Tube diameter 
Fluid filament vector tracked for stretching 
computations 
Initial condition for vector I 
Axial length of a single mixer element 
Period 
Mixer radius 
Empty tube Reynolds number = ( p( u,)D) /p 
Particle velocity as a function of position 
Velocity gradient 
Axial position normalized by tube diameter D 
Normalized axial position within a single mixer 
element 
Vector of particle position (x, y1 2) 

Greek letters 

Logarithm of geometric mean stretching = log,,(h) 
Stretching experienced by vector 1 
Geometric mean of stretching over all vectors on a 
given cross-section 
Fluid viscosity 
Fluid density 
Variance 
Standard deviation 
Number based variation coefficient 
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